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Abstract. The theoretical framework of Statistical Learning Theory
(SLT) for pattern recognition problems is extended to comprehend the
situations where an infinite value of the loss function is employed to
prevent misclassifications in specific regions with high reliability.

Sufficient conditions for ensuring the consistency of the Empirical Risk
Minimization (ERM) criterion are then established and an explicit bound,
in terms of the VC dimension of the class of decision functions employed
to solve the problem, is derived.

1 Introduction

Pattern recognition problems deal with the important task of performing a bi-
nary classification of data pertaining to a given physical system by examining a
finite collection of examples, usually called training set.

A variety of different methods have been proposed for solving pattern recog-
nition problems; normally, the theoretical framework employed to establish the
consistence of the followed approach is the one proposed by Vapnik & Chervo-
nenkis more than thirty years ago [1–3] and currently referred to as Statistical
Learning Theory (SLT).

In this framework the solution of any pattern recognition problem is shown to
be equivalent to a proper functional optimization problem, where the (probabil-
ity) measures involved are totally unknown and must be (implicitly) estimated
through the examples contained in the training set. In particular, the functional
to be minimized, called expected risk, is the expected value of a binary loss
function that assumes value 1 in correspondence with a given input data, if a
misclassification occurs.

The adoption of a binary loss function amounts to treat in the same manner
all the examples in the training set; consequently, no a priori information is
supposed to be available about the reliability of the data at hand. In fact, if
this information would be accessible, a possible way of taking into account the
highest confidence associated with a specific subset of the input space could be
to increase the value of the loss function in that region.



In the limit case we could assign an infinite value of the loss function in
correspondence with the data belonging to the region with high reliability, thus
preventing any misclassification inside it. However, the adoption of this choice
violates a basic requirement for the application of SLT, since the consistency of
the Empirical Risk Minimization (ERM) criterion (usually adopted in pattern
recognition techniques) is established only if the expected risk is always finite.

In this paper an extension of the theoretical framework of SLT is proposed
to comprehend the case of pattern recognition problems where the loss function
can assume an infinite value. In particular, it is shown that the finiteness of the
VC dimension for the class of decision functions employed is still a sufficient
condition for the consistency of the ERM criterion. An explicit upper bound for
the error probability is provided, depending on the size of the available training
set.

Due to space limitations, some proofs have been omitted.

2 The theoretical framework for pattern recognition
problems

Consider a general pattern recognition problem, where vectors x ∈ D ⊂ Rd

have to be assigned to one of two possible classes, associated with the values of a
binary output y, coded by the integers −1 and +1. Every solution for the pattern
recognition problem at hand is given by a binary function ϕ : D → {−1, 1}, called
classifier or decision function.

Usually, a sufficiently large set of classifiers Γ = {ϕ(x, α), α ∈ Λ} is consid-
ered and the best decision function ϕ(x, α∗) that minimizes the expected risk

R(α) =
∫

Q(z, α)dF (z) , α ∈ Λ

is selected. Here, F (z) is the joint cumulative distribution function (c.d.f.) of
z = (x, y), whereas Q is called loss function and is given by

Q(z, α) = |y − ϕ(x, α)| =
{

0 if y = ϕ(x, α)
1 if y 6= ϕ(x, α) (1)

However, when solving real world pattern recognition problems, usually we
do not know the distribution function F (z), but have only access to a training set
Sl containing l samples (xj , yj), j = 1, . . . , l, supposed to be obtained through l
i.i.d. applications of F .

In this case we have not sufficient information to retrieve the minimum of
the expected risk. A possible way to proceed is to apply the Empirical Risk
Minimization (ERM) method, which suggests to calculate the function in Γ
that minimizes the empirical risk, i.e. the risk computed on the training set.

Remp(α) =
1
l

l∑

j=1

Q(zj , α) (2)



It is then important to obtain necessary and sufficient conditions for the
consistence of the ERM approach. Vapnik [3, page 82] has shown that a stronger
definition of consistency allows to rule out trivial situations:

Definition 1. The ERM method is strictly consistent for the set of functions
{Q(z, α), α ∈ Λ} and the probability distribution function F (z) if for any non-
empty subset Λ(c) = {α ∈ Λ : R(α) ≥ c} with c ∈ (−∞,+∞) the following con-
vergence holds

inf
α∈Λ(c)

Remp(α) P−−−→
l→∞

inf
α∈Λ(c)

R(α)

Necessary and sufficient conditions for strict consistency are provided by the
following theorem [3, page 88].

Theorem 1. If two real constants a and A can be found such that for every
α ∈ Λ the inequalities a ≤ R(α) ≤ A hold, then the following two statements are
equivalent:

1. The empirical risk minimization method is strictly consistent on the set of
functions {Q(z, α), α ∈ Λ}.

2. The uniform one-sided convergence of the mean to their matematical expec-
tation takes place over the set of functions {Q(z, α), α ∈ Λ}, i.e.

lim
l→∞

P
{

sup
α∈Λ

(R(α)−Remp(α)) > ε

}
= 0, for all ε > 0

Vapnik also gives an upper bound for the rate of convergence [3, page 130]:

P
{

sup
α∈Λ

(R(α)−Remp(α)) > ε

}
≤ 4 exp

{(
GΛ(2l)

l
−

(
ε− 1

l

)2
)

l

}
(3)

where GΛ(m) is the so called Growth function.
The quantity exp(GΛ(m)) represents the highest number of different classi-

fications achievable by the functions in Γ on a sample of m points; note that
GΛ(m) depends only on Λ and m. Furthermore it can be shown that the growth
function assumes only two possible behaviors: linear for all values of m or linear
for all m ≤ h, where h is a positive integer called VC dimension, and logarith-
mic for m > h. This result allows to characterize completely the consistence
of the ERM approach; in fact for any c.d.f. F (z), a sufficient condition for the
consistency of the ERM method is that the set Γ has a finite VC dimension.

3 A natural extension to unbounded loss functions

The theoretical framework described in the last section treats all the examples
(xj , yj) of the training set in the same way; no information is supposed to be
known about the confidence of the output value yj assigned to the input vector
xj . On the other hand, if this kind of information is actually available, we can



properly modify the loss function Q to take into account the different reliability
associated with each portion of the input space.

In the limit case, if we have high confidence in output values included in
samples belonging to a given subset C ⊂ Z, we can assume that the loss function
Q takes an infinite value in these points. Denote with

C+ = {x ∈ D : (x,+1) ∈ C} , C− = {x ∈ D : (x,−1) ∈ C}
the subsets of C with positive and negative label respectively, and with

D+
α = {x ∈ D : ϕ(x, α) = +1} , D−

α = {x ∈ D : ϕ(x, α) = −1}
the partition of X in two regions made by the function ϕ(x, α) ∈ Γ .

With this definition only the classifiers ϕ(x, α) such that both the intersec-
tions D−

α ∩C+ and D+
α ∩C− are empty can lead to a finite value of the expected

risk. This condition can be viewed as a too strong constraint on the solution we
are searching for. In fact, even if the measure of the subset

Tα = (D−
α ∩ C+) ∪ (D+

α ∩ C−)

is negligible, the expected risk goes to infinity.
To relax this constraint we can accept as possible solutions also the decision

functions ϕ(x, α) for which the measure of Tα is smaller than a prescribed tol-
erance τ > 0. The corresponding value of the expected risk R(α) can be kept
finite if the following loss function is employed:

Qτ (z, α) =
{

Q′(z, α) if µ(Tα) ≥ τ
Q(z, α) if µ(Tα) < τ

(4)

where

Q′(z, α) =





0 if y = ϕ(x, α)
1 if y 6= ϕ(x, α) and (x, y) /∈ C
∞ if y 6= ϕ(x, α) and (x, y) ∈ C (i.e. if x ∈ Tα)

(5)

Using these definitions, the expected and the empirical risk become respec-
tively

Rτ (α) =
∫

Qτ (z, α)dF (z), Rτ,emp(α) =
1
l

l∑

j=1

Qτ (zj , α)

Now, we want to extend results on consistency of the ERM method to this
new setting. To this aim a generalization of Vapnik’s theory is required to include
situations where the loss function assume values in the range [0,∞].

Denote with Λτ = {α ∈ Λ : µ(Tα) < τ} the subset of Λ including only
parameters α which provide a finite loss function and with Λ∞ the complement
of Λτ in Λ. Note that if α ∈ Λτ , the expected risk Rτ (α) assumes a finite value,
while Rτ (α) = ∞ for all α ∈ Λ∞.



It can be easily seen that the definition of strict consistency for ERM method
can be directly generalized to the present case. Note that, according to the
hypothesis of Theorem 1, we suppose that two real constants a and A ∈ R exist
such that for every c ≤ a, Λ(c) = Λ(a) and for every c ≥ A, Λ(c) = Λ∞. Then,
we can consider only the real values c ∈ [a,A] and the case c = ∞.

The following three lemmas provide specific results that are needed to gener-
alize Theorem 1. Denote with Λτ (c) = {α ∈ Λτ : Rτ (α) > c} the subset of Λ(c)
containing the parameters which provide a finite expected risk. Note that, for
all c ∈ [a,A],

Λ(c) \ Λτ (c) = Λ(∞) = Λ∞ (6)

Lemma 1. If
inf

α∈Λ∞
Rτ,emp(α) P−−−→

l→∞
inf

α∈Λ∞
Rτ (α) (7)

then

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (8)

for every ε > 0 and every c ∈ [a, A].

Proof. If (8) would not be valid, then, by using (6) we obtain for every ε > 0

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (9)

and it can be easily shown that (7) leads to

inf
α∈Λ(c)

Rτ,emp(α) P−−−→
l→∞

inf
α∈Λ∞

Rτ (α) = ∞

This is not possible since Rτ,emp(α) ∈ R for all α ∈ Λ(c) with c ∈ [a,A]. ut

Lemma 2. Under hypothesis (7) the following two statements are equivalent for
all c ∈ [a,A]:

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (10)

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (11)

Proof. At first we can note that for all c ∈ [a,A]

inf
α∈Λ(c)

Rτ (α) = inf
α∈Λτ (c)

Rτ (α) (12)

since
inf

α∈Λ∞
Rτ (α) = ∞



Now, let us prove that (10) implies (11); we have

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}

≤ lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ >
ε

2

}

+ lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ >
ε

2

}

Due to (12) and (10) the first term at the right hand side vanishes; for the last
term it is sufficient to apply Lemma 1.

To verify that (11) implies (10) we employ Lemma 1 to obtain that

inf
α∈Λ(c)

Rτ,emp(α) P−−−→
l→∞

inf
α∈Λτ (c)

Rτ (α)

from which (10) follows after the application of (12). ut

Lemma 3. The following equality holds for every ε > 0:

P
{∣∣∣∣ inf

α∈Λ∞
Rτ (α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= P

{
sup

α∈Λ∞
(Rτ (α)−Rτ,emp(α)) > ε

}

Using previous lemmas we can prove the following two results which gener-
alize Theorem 1 and the upper bound for the rate of convergence (3).

Theorem 2. The following two statements are equivalent:

1. The ERM method is strictly consistent on the set of functions {Qτ (z, α),
α ∈ Λ}.

2. For every ε > 0

lim
l→∞

P
{

sup
α∈Λ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0 (13)

Proof. Since

lim
l→∞

P
{

sup
α∈Λ

(Rτ (α)−Rτ,emp(α)) > ε

}

≤ lim
l→∞

P
{

sup
α∈Λ∞

(Rτ (α)−Rτ,emp(α)) > ε

}

+ lim
l→∞

P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
(14)

to obtain that 1 implies 2 it is sufficient to prove that the two terms at the right
hand side of (14) vanish for every ε > 0.



For the first term we can apply Lemma 3 by noting that, when c = ∞, the
definition of strict consistency gives

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ∞
Rτ (α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (15)

For the second term we can use Lemma 2, thus obtaining for c ∈ [a,A] that

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

is equivalent to

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

Now, when α ∈ Λτ (c), we have Qτ (z, α) = Q(z, α); then, Theorem 1 can be
employed to ensure that

lim
l→∞

P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0 for every ε > 0

To verify that 2 implies 1, we note that (13) implies

lim
l→∞

P
{

sup
α∈Λ∞

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0

and

lim
l→∞

P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0

Then Lemma 3 ensure that

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ∞
Rτ (α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (16)

whereas the application of Theorem 1 yields

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

By using Lemma 2 we obtain therefore

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (17)

for every ε > 0 and every c ∈ [a, A]. ut
Theorem 3. The following inequality holds

P



sup

α∈Λ




∫
Qτ (z, α)dF (z)− 1

l

l∑

j=1

Qτ (zj , α)


 > ε





≤ 4 exp

{(
GΛτ (2l)

l
−

(
ε− 1

l

)2
)

l

}
+ 4 exp

{(
GΛ∞(2l)

l
−

(
τ − 2

l

)2
)

l

}
(18)



4 A more practical choice for the empirical risk

Unfortunately, in real-world applications the measure µ on the input space D is
unknown and only the training set is available. In these cases the empirical risk
Rτ,emp(α), which depends on µ(Tα), cannot be calculated. Thus we have to use a
different form of the empirical risk that allows a direct evaluation while ensuring
the convergence in probability to infα∈Λ Rτ (α) when l increases indefinitely. In
this way the replacement does not prejudice the consistency of the ERM method.

A possible choice is the following

R′emp(α) =
1
l

l∑

j=1

Q′(zj , α)

where Q′(z, α) is defined in (5).
We can prove that, under mild conditions, this form of the empirical risk

shares the same convergence properties of Rτ,emp(α).
If Λ0 = {α ∈ Λτ : µ(Tα) = 0}, the corresponding classifiers ϕ(x, α), with

α ∈ Λ0 do not misclassify any point of the certainty region C. Then Λ0,τ = Λτ\Λ0

includes the values of α for which 0 < µ(Tα) < τ .
The following corollary establishes the convergence properties of R′emp(α).

Corollary 1. If

inf
α∈Λ0

Rτ (α) ≤ inf
α∈Λ0,τ

Rτ (α) (19)

then
inf
α∈Λ

R′emp(α) P−−−→
l→∞

inf
α∈Λ

Rτ (α) (20)

Furthermore, it can be easily proved that the rate of convergence of R′emp(α)
to Rτ (α) can be upper bounded by the right hand side of (18).
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